In July, I (Martin) attended New Harvest’s 2018 conference on cellular meat at MIT’s Media Lab. I wrote an extensive report on this valuable, informative, and very well-organized colloquium—partly as a means of grappling with the science, but also as a way to think about what role cellular meat might play in imagining a vegan America. Over the next four blogs—divided into Friday morning, Friday afternoon, Saturday morning, and Saturday afternoon—I report on what was said, and reactions to it, as well as my own observations. Note: New Harvest will no doubt be putting all the talks on YouTube, and so you can check out what was said (and whether I accurately reported it) at a later date.
* * *
In the afternoon panel, attendees heard from Jess Krieger, a New Harvest research fellow and PhD candidate in biological sciences at Kent State. According to her LinkedIn page, Krieger’s ethical and scientific goal is clear: to utilize “biomanufacturing processes to produce organs and tissues that replace the use of animals in research and the livestock industry.”
Krieger reflected on what she thought would be the trajectory of the science of cellular meat. Initially, she said, animal cells would be food additives in plant-based products; the next stage would see pure animal-cell products created; finally, full-animal products would be manufactured. In short, this development could be characterized as cell manufacturing leading to tissue biofabrication, and then to tissue manufacturing.
Krieger noted the many processes that were involved in cellular reproduction, from myogenesis (the development of skeletal muscle cells), vasculogenesis (the production of endothelial cells), and adipogenesis (which marbles the meat with fat). She also pointed out the various means by which meat cells can be developed, such as through extrusion or stereolithography (a form of 3-D printing), or a combination of the two. Krieger observed that tissue might require different kind of media formulation to differentiate and grow.
In addition to her research, Krieger and her team had developed a lab-scale bioreactor for cultured meat (the 2.0 version of which develops tissue more quickly, and will be available in December 2018). In the bioreactor a perfusion system pumps “blood” through tissue—delivering hormones, growth factors, trace elements, nutrients, and oxygen, and removing waste and other factors. In the question-and-answer session, Krieger was asked whether this process produced the meat quality of muscle. She replied that theoretically it could, but that it hadn’t been tested.
Krieger was followed by Glenn Gaudette, Professor of Biomedical Engineering at Worcester Polytechnic Institute. Gaudette is a tissue engineer, whose research was galvanized by the 100,000-person gap between those who needed organ replacements and the organs available. This was a moral as well as a technical challenge, and he thought about how to grow human muscle cells that might, for instance, take the place of the heart.
Gaudette knew that cells needed oxygen to grow, but that if they grew beyond the limit of 200 microns, they died—unless they had a vascular system that provided a regular and sustainable supply of the nutrients (much like Krieger’s bioreactor). Gaudette told the audience that he and his team had been eating lunch one day when a member had observed that the spinach leaves in their salad had veins that approximated the vascular structure of the human heart. Using detergents to kill cells that might contaminate or block the perfusion process, they then poured red dye and eventually blood into and through the vasculature of the now-transparent leaf to form a scaffold. They injected human muscle cells, which through the electrochemical reactions of calcium within the cells, created contractions that pumped the blood through the veins of the leaf.
For Gaudette and his team, the potential of such leaves to develop human heart cells was obvious. They’re now examining the structure of broccoli as a framework for the bronchi and bronchioles of the human lung, and bamboo for establishing bone growth. Both require much more research, but the theoretical possibilities are manifold.
Gaudette noted that using plant products for scaffolding to develop cells beyond the small-lab sample was not only more environmentally friendly than employing tissue-engineering scaffolds from animal or synthetic materials, but might well be cheaper. Plants were abundant, readily available, could be grown in different shapes and forms, and could be genetically engineered. Gaudette pointed to an article by George Toulomes called “Making Steak out of Spinach” for more information on his research and the elements of cellular biology that made it—and other tissue development—possible.
In the question-and-answer session, Gaudette was asked whether there were alternatives to spinach that might provide greater vascularity. He replied there were many types of spinach, let alone other forms of plants, such as lettuce (and its numerous forms) that might be employed.
Following Gaudette was a panel on a different form of transparency than see-through spinach: that of sharing research data within the scientific community and with people.
Andrew Stout was another PhD candidate and New Harvest Research Fellow working on “biomaterial functionalization, genetic engineering of skeletal muscle development, and computational approaches to understanding and directing cell metabolism,” at Tufts University. He discussed his work on manipulating cells to increase un- and polyunsaturated fatty acids and lessen saturated fatty acids within meat. He admitted there might be effects on flavor and texture (and cost) in this process, but that the possibility of adding value to cultured meat products by, for instance, reducing carnitine and lowering saturated fat might be worth it. Stout’s key point, however, was that in conducting his research, he’d made considerable use of open data and metabolic models drawn from research by government and meat-producers.
Next up was Kathi Cover, who worked as an intellectual property (IP) lawyer at Sidley Austin, with a focus on how one might go about formalizing one’s work on cellular agriculture. Cover described the four kinds of IP: patents, copyrights, trademarks, and trade secrets. Patents were for inventions that had to be new, couldn’t be obvious, and had to be useful. A patent typically lasted for twenty years. Copyrights were the original expressions of idea or authorship, and lasted the life of the author, plus another seventy years. Trademarks applied to words or symbols with a commercial value, and lasted a decade, with options to renew. And trade secrets were confidential information with a commercial value; by definition, they had to remain secret.
Cover observed that each of these IP forms offered pros and cons to those working within the cultured meat space—especially on the question of whether it was wise or not to publish one’s work, patent it, or keep it secret. Publishing one’s research was free to do, and in theory it prevented a competitor from patenting your idea. The downside of publishing was that it only offered you limited rights (such as copyright) and removed your ability to leverage your research as an asset. Patenting your product had its benefits: a patent gave you exclusive rights, powerful leverage, and a valuable asset. However, patents were expensive and time-consuming to obtain, and were of limited duration. A trade secret, on the one hand, was a valuable asset with possible leverage; it was low-cost with a potentially infinite duration. On the other hand, trade secrets were easy to lose. All these factors, Cover observed, needed to be considered in thinking about how or whether to communicate one’s work or announce one’s product.
Yuki Hanyu from Japan was next, speaking on building a cultured meat community. Hanyu, who runs the Shojinmeat Project and Integriculture Inc., offered perhaps the most polemical and visionary definition of transparency. Hanyu argued that it was one thing to produce a safe product through regulation and legal transparency; it was quite another matter for consumers to feel safe, which was a psycho-cultural phenomenon. Hanyu was convinced it was necessary to develop a positive and accessible climate around cellular meat, emphasizing safety and trust-building; thus, he’d developed two strands for his interests: Integriculture for the commercialization of cellular meat, and Shojinmeat Project as an open source for information and imaginative constructs around cellular meat.
Hanyu’s purpose at Shojinmeat, he enthused, was to democratize cell ag: to encourage DIY bio-fab enthusiasts, students, researchers, artists, and writers to provide familiar contexts for people within which to imagine cellular meat—such as comic-cons and fantasy fiction featuring cellular meat. Hanyu claimed he saw no reason why, instead of using FBS or growth factors to develop cells, you couldn’t use the cells from the organs of the animal body that already performed that function. Thus, he and his team were growing the liver and other organs to produce a growth medium.
Hanyu offered his audience his vision for cellular meat. Brand ownership and regionalism could open up opportunities for local farmers and hobbyists to develop their own cellular meat recipes. He even raised the prospect that you could enjoy a burger and video-link to the individual cow from whose cells your meal had been cultivated, grazing peacefully as you ate her cells. He imagined industrial meat breweries with steaks developing inside would be accompanied in the marketplace by home-brew meat kits on the kitchen counter. Why stop at meat? he asked. You could do your own tissue-engineering, or grow your own kidney, or add your own components to meat to make it even tastier by, for instance, creating an algae–meat composite. At some point, one might ask, he said, whether the product even is meat?
For Hanyu, the appropriate trajectory for the widespread adoption of clean-meat technology was for academia to hint at the way forward, citizens to act and set the direction of where they wanted it to go, and businesses to scale and deliver. That, he felt, was democratized citizen agriculture.
The final panelist was Caleb Harper, the Principal Investigator and Director of the Open Agriculture Initiative at the MIT Media Lab. The mission of OpenAg, he said, was to record, decode, and recode—particularly through genome-editing technology such as CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), gene drives, and daisy chains that would allow facets of an organism to be altered not only for that organism and all its offspring, but that would, likewise, change the ecosystem in which that organism operated.
In that regard, Harper noted, it was now possible to move biology into computation and so predict (or perhaps estimate) a yield and biochemical outcome within any given environment, allowing for a maximally efficient or desirable outcome for the organism within that biome. By way of an example, he suggested that it was now possible to calculate which plants within which part of a field would grow under which optimal conditions, rather than a single monoculture.
Such amalgamations of computational science with genetics obviously meant, Harper continued, that society needed to open up a conversation about what “science” and “natural” would mean in the Anthropocene. Through its plant and other programs at PFC_EDU, the OpenAg Initiative was growing, sensing, and producing enormous amounts of usable data (alongside its plants), and doing so for under $300. Data were gathered as part of the Open Phenome Project, “an open-source digital library with open data sets that cross link phenotypic response in plants (taste, nutrition, etc) to environmental variables, biologic variables, genetic variables and resources required in cultivation (inputs).” The MIT team was farming microbes and diving into the biochemical machinery, evolution, and ecology of plants to make growing programmable food for nutrition, flavor, and fragrance a reality.
In the question-and-answer session, the moderator Karien Bezuidenhout of the Shuttleworth Foundation, an NGO committed to an open-knowledge society, asked the panelists what they saw as the fundamental reason for transparency. Hanyu argued that openness was necessary for consumer acceptance; Cover said it was important that companies and scientists were transparent about the financial sources of their work and products; Walker warned attendees to be clear about the huge amount of risk in the space; indeed, he added, $20 million bankruptcies were common. Though risk was important, even necessary, he observed, taking it on wasn’t for the faint of heart.
Evidently, the reason for this panel was to figure out how open source and transparent (and therefore altruistic) one should be as a scientist or entrepreneur, given the potential demands of one’s investors and the possibilities of considerable wealth. It’s impossible to determine where on the spectrum the majority of attendees lay between absolute mercantilism and complete altruism, but it’s reasonable to assume that this space will reveal its sinners and saints in due course.
* * *
The next three presenters focused on using cellular technology to create products that would form part of the ecosystem of the cellular meat universe.
First up was Prakash Iyer of Gingko Bioworks, which describes its work as “biology by design.” Biology, Iyer noted, was the most powerful manufacturing tool on the planet: self-repairing, self-assembling, self-replicating—a proven form of nanotechnology on a global scale. At Gingko, teams worked on perfume and flavors, as well as the fermentation of design and built products, using yeast, enzymes, or bacteria over substrates of sugars, oils, and alcohols. The applications, Iyer suggested, lay in an analysis of products that might, for instance, provide “off-notes” (scents detected by the nose that couldn’t be determined by technology alone).
Next was Xun Wang, whose company (Triton Algae Innovations) was attempting to make animal proteins from algae—most particularly Chlamydomonas reinhardtii (“Chlamy”), a single-cell green alga that tasted like sweet parsley. Xun listed the many environmental and human–population growth reasons why it’s necessary to curtail animal-based agriculture (several presenters at the conference did the same), and argued that, as the mother of all plants and animals, microalgae offered many benefits to address the deficits caused by consuming earth’s resources feeding animals to feed to feed to humans. Chlamy, Xun reminded us, was distributed worldwide and was the ideal host for mammalian proteins, monoclonal antibodies, vaccines, and hormones.
As it stood, continued Xun, Chlamy production and utilization had not been economically scaled, but production costs for fermentation could range from between $7.75 per kilogram (of dried powder) to, under full-scale operations, $2.17. As a supplement, Xun said, Chlamy was not only safe to eat, but had a pleasant taste, was nutritious (it contained 847 percent of the recommended daily amount of Omega-3 fatty acids), and contained no pesticides or bacterial contaminations. Xun cautioned that not all algae were the same; Chlamy checked all the boxes in terms of its advanced genetic tools, its scalable production, its fermentation capability, and its standing as GRAS (generally recognized as safe).
Xun reported that Triton was attempting to replicate what Impossible Foods had done with its plant-based burger by developing “heme” legehemoglobin from Pichia (a yeast) and adding it to a plant-burger. Finally, Xun, said, Chlamy should be suitable as a “feedstock” for clean meat.
Third was Eben Bayer, of Ecovative, which uses mycelium (the vegetative part of fungus) to grow materials such as packaging and mycobricks, with the aim of using it as a scaffold on which to grow leather, bone, and meat. Mycelium, he observed, was earth compatible, could grow in nine days, and was durable and strong. Their leather-like material (textile.bio) and fabric design (partnering with Bolt Threads) was available for a limited market. In terms of cellular meat, Bayer observed, Ecovative had developed a mycelium scaffolding that was programmable, biocompatible, and edible; the strain of fungus the company used didn’t have a special flavor, so wouldn’t necessarily change the taste of the meat.
In reflecting on the panel on transparency and the technologists working with organismal components, algae, and mycelium it’s hard not to be impressed by the technical sophistication, state-of-the-art biochemical, computational, and genomic skills employed by these companies. It was hard to know exactly quite how market-ready any of these companies was, and what the ratio of pitch to scientific explanation to development overview to market scale was in each presentation. As it turned out, the following day provided a little perspective on what we’d heard.