New Harvest’s Conference on Cellular Meat: Friday Morning (1)

MeatIn July, I (Martin) attended New Harvest’s 2018 conference on cellular meat at MIT’s Media Lab. I wrote an extensive report on this valuable, informative, and very well-organized colloquium—partly as a means of grappling with the science, but also as a way to think about what role cellular meat might play in imagining a vegan America. Over the next four blogs—divided into Friday morning, Friday  afternoon, Saturday morning, and Saturday afternoon—I report on what was said, and reactions to it, as well as my own observations. Note: New Harvest will no doubt be putting all the talks on YouTube, and so you can check out what was said (and whether I accurately reported it) at a later date.

* * *

The third New Harvest conference, on cellular agriculture (hereafter cell-ag) convened at the Massachusetts Institute of Technology’s Media Lab on Friday July 20 and Saturday July 21, 2018. About 150 people were in attendance.

The conference took place in the context of a public meeting held on July 12 by the Food and Drug Administration (FDA) to consider the following questions:

  • What considerations specific to animal cell culture technology would be appropriate to include in evaluation of food produced by this method of manufacture?
  • What kinds of variations in manufacturing methods would be relevant to safety for foods produced by animal cell culture technology?
  • What kinds of substances would be used in the manufacture of foods produced using animal cell culture technology and what considerations would be appropriate in evaluating the safety of these uses?
  • Are the hazards associated with production of foods using animal cell culture technology different from those associated with traditional food production/processing (such as, for example, insanitary conditions, improper temperature controls, or control of contaminants)? Is there a need for unique control measures to address the hazards associated with production of foods using animal cell culture technology?

Further context for the conference was supplied by a petition from the U.S. Cattlemen’s Association to the government, requesting that beef and meat labels not be allowed for products “not derived directly from animals raised and slaughtered.

After introductions by Isha Datar, the CEO, and Erin Kim, the communications director at New Harvest (a self-described non-profit “research institute accelerating breakthroughs in cell-ag”), Eric Schulze, a molecular and cellular biologist and vice-president of product and regulation at Memphis Meats, gave a presentation entitled “Food and Agricultural Innovation as Tradition.” Schulze averred that cell-ag was intended to add to existing food systems and that it was necessary for those working within the space to go forward carefully and deliberatively, working as collaboratively as possible. He noted that the costs of production (at this moment, of prototypes) were falling and that the next hurdles awaiting the cell-ag industry were scaling the product and making sure it was safe: two phases he thought wouldn’t take a long time. Schulze observed that, technical obstacles aside, the industry had considerable work ahead to educate the public about its products, which was why transparency and emphasis on safety were necessary. Understanding (whether among regulators or the public), he emphasized, wasn’t a given but needed to be built.

Schulze foresaw immense challenges ahead if these elements were ignored, especially for the regulation of the industry’s products by the FDA and the Department of Agriculture (USDA), both of which had strong claims to be the principle regulators of cell-ag. Schulze, who was himself a regulator at the FDA for six years, said that he believed that both agencies were currently open to considering cellular meat within existing regulatory structures, but that the process of considering the safety and labeling of cell-ag products was still at an early stage.

Schulze added that Memphis Meats’ position was that its process and putative products belonged within the current regulatory system and the regulations themselves, slotting next to conventional agricultural meat as a protein source. He urged respectful and open dialogue among stakeholders in cellular and traditional agricultures, and said it was vital to remain open to a plurality of views.

Schulze admitted that how to define cell-ag’s products remained an open question, but that it would ultimately be necessary to settle on a terminology that made clear to consumers that cell-ag companies took seriously matters of safety, transparency, and feeding people sustainably. Reflecting a concern that would be raised throughout the conference, Schulze urged those working within the cell-ag space not to think of themselves as Silicon Valley technologists developing the latest app or gadget; but as nourishers of billions of people. It was, therefore, imperative neither to expect nor to desire shortcuts to the market or to consumers’ hearts or minds. We—by which Schulze meant the various companies involved in cellular meat creation and production—were in it together. “We can’t break things,” he said.

In the question-and-answer session following the talk, Schulze was asked what he’d recommend people say in the public comments that the FDA had opened following the July 12 meeting. Schulze responded that it was important for all interested parties to take advantage of the comment period, which was open until September 25, and to address the questions asked by the government and offer opinions in line with their organization’s goals. He stressed again the need for the industry to work together, and to submit comments that oriented the industry in a particular direction.

Schulze’s opening talk was interestingly bifurcated: at once a passionate evocation of the potential of cellular agriculture and an admonition to the industry to be ready to assume the self-governance, market, and regulatory responsibilities of its counterparts in animal agriculture. Schulze’s studious efforts to resist the language of disruption or of “replacing” animal agriculture, and his emphasis on the cell-ag industry’s compatibility with existing food-production norms, reflected perhaps not only the reality that meat-industry representatives were in the room, and that more were paying more attention and scrutiny elsewhere, but more pointedly the FDA’s early and considerable scrutiny of cell-ag—perhaps earlier than his industry had expected, or, perhaps, were prepared for.

Schulze’s caution may had been influenced by revelations over the last two years of cavalier attitudes toward transparency and public trust from Silicon Valley companies—such as Twitter, Facebook, and Uber—and perceptions (at least) of their indifference to political niceties, sound governance, or the role of regulators. On the one hand, such caution might suggest the maturation of an industry beyond technical wizardry or promotional hype; on the other, it may not reflect the goals or impulses of many of those involved in the cell-ag space to dismantle current systems that favor environmentally destructive industries with considerable lobbying power in Washington.

The next talk was by Marcela Vilarino, a PhD candidate in the UC-Davis Department of Animal Science. Vilarino, whose PhD focuses on her development of “gene-edited livestock and embryonic stem cells to produce human organs/tissues by blastocyst complementation,” announced that her team had produced the first embryonic stem cells (ESCs) from cows. This process, which had been twenty years in the making (following the successful derivation of the first human ESCs in 1998), had taken so long because of the absence of suitable conditions for a medium in which these cells could grow. In her team’s case, the breakthrough had been achieved by taking embryos from slaughterhouses, and developing culture cells over three weeks using the medium of mouse cells in order to get a cell-line.

The essential challenges in developing cell technology, she (and others in this meeting) indicated was in assuring that a cell’s pluripotency—in other words, its ability to differentiate into multiple forms—was captured before it was lost as the organismic properties of that specific cell developed. A cell that was fully pluripotent (or totipotent) could develop three germ layers: the endoderm (the stomach, gastrointestinal tract, and lungs), the mesoderm (muscle, bone, blood, and the urogenital formations), or ectoderm (skin and the nervous tissues). Cells at totipotency, therefore, offered maximum flexibility in developing flesh, skin, and so on.

The applications, said Vilarino, of her team’s breakthrough were substantial. It would now be possible to speed up the time an embryonic cell line could be produced for cloning. In-vitro breeding could be conducted to derive specific genetic traits for animals, skipping over the necessity of using animals for genomic selection. A traditional breeding program for a cow, she observed, might take two to three years; employing this technology would mean the production of gametes in three to four months, allowing improved selection much more quickly. It would, in theory, be possible to derive any kinds of cells from embryonic stem cells in vitro: nerve, muscle, blood, and adipocytes (fatty tissue), without the need to use an animal.

The fundamental bottleneck to making cultured beef grow faster and cheaper, said Vilarino in the question-and-answer session, was the difficulty of getting exact and reliable media conditions, and the expense of that medium: the entire production of cells in terms of volume needed to be more efficient. Establishing stem cells from farmed animals was so difficult because of the conditions surrounding the culturation of cells—especially making sure that in their earliest stages they maintained pluripotency. Vilarino was asked when she thought it would be possible to derive embryonic stem cells from chicken or fish. She said that she didn’t know.

Clearly, the possibility of using embryonic stem cells within the cultured meat process (in addition to the regular replication of cells) represents a breakthrough . . . of sorts. What was still noticeable (and was rarely addressed throughout the remainder of the conference) was that so much of the science, let alone the production, of cellular meat was dependent on animal-based media: whether fetal bovine serum (FBS) or the use of embryos from slaughterhouses, or cell lines from mice, or, indeed, the very fact that such research is currently contained within the animal science departments of universities. The fact that this was not the subject of widespread discussion by presenters at the conference doesn’t mean that attendees weren’t aware of the paradox, or the discrepancy between the cost of developing the product in the lab and the challenges of scale and costs of production for retail.

Following Vilarino’s talk, William “Benjy” Mikel, the Chief Business Development Officer for John R. White & Co., a food development company, spoke about the “science of meat.” Mikel was a meat scientist and had worked for several decades within the extension services of universities attempting to ameliorate the “problems” (my quotes) associated with handling the flesh and byproducts of dead animals. Mikel reminded attendees that meat was a composite of nerves, fat tissue, blood vessels, and muscle; that muscle tissue itself could be striated or smooth; and that, furthermore, in addition to hide and flesh, the animal’s body delivered organs and “offal” that the meat industry had turned into added-value products. In fact, Mikel observed, the profit margins for the cattle industry were so slender that byproducts were the main reason that those involved in animal agriculture made any money at all.

The reason why Mikel was glad to be at the conference, he said, was because of currently irresolvable problems associated with killing cows for food. Meat, he observed, consisted of 75 percent water, 18 percent protein, three percent fat, and 3.5 percent other minerals. When rigor mortis set in to the cow’s body, he continued, it was hard for the meat to retain moisture, which led to undesirable loss of flavor, a hardening of the texture, and discoloration. The meat industry had dealt with this problem by adding phosphates and salt—along with pigmentation—to create a meat product that was juicy, tender, and (to the consumer’s eye) looked like what cow’s meat should look like. Indeed, Mikel counted it as progress that more and more non–animal based items (such as water, salt, sodium phosphate, modified food starch, soy protein isolate, carrageenan, gums, seasonings, and flavorings) had been added through the process of marination to make meat last longer, look more attractive, and taste better.

Mikel felt that biotechnology in general, and cell-ag scientists in particular, could develop items to generate more “opportunities” and “product enhancements”—especially around processed meats, which, he noted, constituted three-quarters of the market of all meat products. He urged scientists at the conference to work with their colleagues in meat science to understand one another’s work, and turn low-quality products into higher value items.

In the question-and-answer session following his talk, Mikel was asked what criteria he, as a meat scientist, would consider optimal for Memphis Meats’ products. Mikel said that he’d be concerned about its pH value, its water-binding capacity, its protein make-up, and how it compared with conventionally produced meat products. He was also asked whether he thought that cell-ag products should be called meat. Mikel knew the question was loaded and announced he wouldn’t touch that issue. However, he continued, definitions within the meat industry weren’t fixed and had, indeed, changed over the years. He was asked whether he was concerned about the growth factors and hormones that were being added as food ingredients in cell-based cultured meat. His response was similarly diplomatic and noncommittal. Any time anyone looked at ingredient technology, he said, it was necessary to evaluate those technologies and ingredients.

Finally, Mikel was asked whether he agreed that “happier” animals (the quote marks were the questioner’s) produced better food products. The questioner was undoubtedly referring to the stress hormones produced by animals at the point of slaughter that are said to taint the meat. Interestingly, Mikel chose to answer the question by observing that in his experience every animal he had seen was “pretty happy,” and that he believed in humane slaughter. He then informed the audience that he believed God had allowed Man to be His steward and to use what was available for his own use. He didn’t know whether a happy animal produced better-tasting meat, although he admitted that stress might lead to an “uncharacteristic product.” He had, he concluded, seen many pigs smile at him in the course of his work, and he’d enjoyed eating every one of them. The audience laughed.

Mikel’s presentation was at once curious and supple. Echoing the calls of Eric Schulze, Mikel emphasized that cellular meat and conventional meat scientists were in the same business—of delivering a safe, reliable, and desirable animal product to consumers. To that end, therefore, it was logical that the skills of each should be placed at the other’s disposal to enhance their products; indeed, given the multitude of items produced by the animal, it should be possible to add value to a range of processed foods.

There was a studied politesse (as well as cooptation) in the means by which Mikel flattened the ethical landscape within which science was operating into one of product development as opposed to no longer harming animals and ending the negative effects of animal agriculture on the environment, land use, and climate change. In Mikel’s answer to the final question presented to him, it was striking he didn’t respond scientifically, but immediately raised the issue of welfare and contextualized it with a dominionist framework. Finally, he dismissed the entire subject with a joke about happy animals apparently wanting to become meat.

To me, Mikel’s performance revealed some essential narrative strands that threaded the entire conference and weave through thinking about the future of meat. The first strand is a useful (if perhaps obvious) reminder that scientific inquiry and industrial activity don’t take place in an ethical vacuum, but are rather buttressed and framed by preconceptions about the “proper” relationship one has with what or who you’re studying and/or exploiting. Mikel’s dominionist response was a useful reminder that, although Eric Schulze and others may wish to tamp expressions of ideological fervor within the cell-ag community in order to smoothe regulatory feathers and not alienate powerful lobbies such as the Cattlemen’s Association, conventional animal agriculture is not a neutral ideological space, but is driven by convictions about the appropriate use (and control) of nature, animals, land rights, and, it may be extrapolated, the manifest destiny inherent in the spread of cattle-ranching throughout the continental United States.

A second strand, however, complicates this “reading.” As Vilarino presented her work on bovine ESC research, it didn’t seem obvious to me at all that her work occupied an entirely different conceptual space from conventional animal agriculture’s manipulation of the reproductive processes of non-human animals. Indeed, as an advocate for the end of the exploitation of animals for their flesh, milk, and skin, I found myself constantly suspending my judgment over the efficacy, practice, and motivations of scientists working within the cellular-agriculture space—making the utilitarian calculation that the ultimate development of cellular meat, leather, and so on is worth both the utilization of animal- and/or slaughterhouse-derived sera, embryos, and media (such as rats and mice), and the belief system that buttresses it.

As I listened to the talk, I realized I might be naïve in assuming that the end result of that research would be the elimination of animal production and slaughter, and that the end result might be, in fact, the integration of cellular science into animal production. By essentially declaring that his work and those of the cell-ag scientists was the same, Mikel was both de-moralizing and dominionizing the work of cell-ag scientists—in order to include both in the broader animal agriculture industry and thus remove any need to replace it. Ironically, Eric Schulze was in effect asking for the same thing, even though it’s very hard to believe that, at this moment, both parties don’t see one another as threats to their very existence.

In listening to the laughter that followed Mikel’s joke at the expense of pigs, I wondered whether some (many?) cellular scientists might, in an effort to demonstrate their ideological disinterestedness, argue that their technology’s application—if it led to, say, longer-lasting meat—would be as ethically valid a commercialization of their science as, for instance, making the slender margins for raising cattle even thinner. It was thought-provoking to hear Mikel not only admit to, but make a virtue of, the fact that meat by itself was unappetizing and that its flavor, texture, and durability were functions of the non-meat enhancements provided by scientists such as himself. In aligning his process with cell-ag scientists, was Mikel in essence forewarning cell ag that it could no more claim to be a more “natural” or “cleaner” process than conventional animal agriculture—precisely because they were both in the business of the technological enhancement of the look, feel, and taste of animal flesh?